DETAILED SPECIFICATIONS
FOR RESIDENTIAL
UNDERGROUND ELECTRICAL CONSTRUCTION

ARTICLE 1 - USE OF DETAILED SPECIFICATIONS

The following is a set of detailed specifications for the construction of an underground electric distribution system.

Depending on the scope of the project, all articles may not pertain to all jobs. The Contractor will be responsible only for the articles that pertain to his specific job. If the Contractor is not sure if an article pertains to his job he shall consult the Developer for verification.

ARTICLE 2 - MATERIALS FURNISHED BY CONTRACTOR

The following is a list of the major materials the Contractor shall furnish, if needed for the job, but it does not necessarily include all of the materials that will be necessary for the project:

1. Materials necessary to install single-phase and three-phase transformer pads.
3. Materials necessary to install 4” primary risers complete with terminators.
4. Materials necessary to install 2” primary risers complete with terminators.
5. Materials necessary to install pads for single-phase and three-phase cabinets.
6. 1” conduit with 4 - #8 wires for streetlights.
7. 2” conduit with pull-line and/or 1-1/0 AWG 15kV XLP AL concentric neutral, jacketed cable.
8. 3” conduit with 1 – 3/0 KCMIL 600V XLP AL URD secondary triplex cable.
9. 3” conduit with 1 - 350 KCMIL 600V XLP AL URD secondary triplex cable.
10. 3” conduit with 1 - 500 KCMIL 600V XLP AL URD secondary triplex cable.
11. 4” conduit with pull-line and/or 3-1/0 AWG 15 kV XLP AL concentric neutral, jacketed cables.
12. 4” conduit with pull-line and/or 3-3/0 AWG 15 kV XLP AL concentric neutral, jacketed cables.
13. Above ground pedestals complete with connectors.
14. Streetlights complete with connectors.

The contractor shall submit to LUS a specification sheet (Appendix A) for the following material prior to installation:

Primary and Secondary Cable, 200A Terminators (Elbow), 200A Cold Shrink Terminators, Transformer Secondary Connectors, Pedestal Secondary Connectors.

The specification sheet shall contain, at a minimum, the following information:

Manufacturer name, Cable size, Stock number, (if applicable) Manufacturer torque specifications
ARTICLE 3 - MATERIALS FURNISHED BY LUS

The following is a list of the materials that LUS will supply to the Contractor to be installed. All materials supplied by LUS are located in the Warehouse at 1210 Walker Road. It shall be the responsibility of the Contractor to transport materials and equipment from the LUS Warehouse to the job site, as required, and return any excess materials and equipment upon completion of the work. The Contractor shall be liable for materials and equipment lost for any reason after these materials have been released by LUS.

1. Transformers
2. Cabinets
3. Ground Sleeves for Cabinet/Transformer Pads
4. 4/0 AWG 15 kV XLP AL concentric neutral, jacketed cable

ARTICLE 4 - TRENCHING

Trenches shall be straight with centerline as shown on the drawings. A chalk line or other accepted means should be used to maintain a straight trench. Depth shall be as shown on the plans.

All excavated material shall be placed in such a manner so that the public will not be inconvenienced. Reasonable provisions shall be made to clear driveways, crosswalks, sidewalks, streets and private roadways. No streets shall be closed to through traffic without permission of LUS. All drains, gutters and sewers for surface drainage shall be kept open or if unavoidably closed, other provisions shall be made for drainage. Sufficient flares, red-light and barricades shall be placed along the trenches on right-of-ways and other locations if they are considered dangerous to the public.

The bottom of the trench shall be smooth and free of coarse aggregate and loose dirt. All trenches shall be backfilled the same day that they are trenched. In cases where an excavation cannot be backfilled the same day, sufficient barricades shall be erected to protect the public. The Contractor shall compact the backfill by rolling over the trench with his trenching tractor. In all backfilling, if the backfill material is too dry to compact to the desired density, it shall be wetted as required. If the backfill is too wet to compact, fresh backfill shall be used in its place. This is particularly required beneath all electrical structures, in which the backfilling shall be compacted to 95% of the surrounding undisturbed soil. No sand of any sort may be used in backfilling.

Regarding the backfill in situations where required, backfill shall be placed in 6" layers (loose depth) and mechanically tamped to a compaction equal to or greater than the density of the surrounding undisturbed earth, or to the satisfaction of LUS.

ARTICLE 5 - STREET CROSSINGS

All street crossings shall be made with PVC Schedule 40 conduit. Street crossings may be performed by one of two methods: 1) cutting the street or 2) jacking or boring the street. It shall be up to the Contractor to decide which method he prefers.
If the Contractor chooses to cut the street, the following shall be adhered to. Conduits shall be laid in a horizontal fashion with no stacking of conduits. Separation between conduits shall be 6" in all directions or as otherwise specified. The street crossing shall be backfilled to sub-grade with "Fill-Crete", a cement grout mixture combined in the following proportions per yard:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>188 lbs</td>
</tr>
<tr>
<td>Sand</td>
<td>3,010 lbs</td>
</tr>
<tr>
<td>Water</td>
<td>42.6 gals.</td>
</tr>
</tbody>
</table>

Concrete or any other alteration of this mix is not acceptable.

In the event the Contractor chooses to jack or bore the street, the requirements of Article 6 below shall be adhered to.

ARTICLE 6 - JACKING OR BORING

Conduit may be placed under an existing or proposed pavement by approved jacking or boring methods. The top of the conduit(s) shall be at least 42" below the bottom of the existing or proposed pavement. Separate bores shall be made for multiple conduit crossings with a minimum of 6" and a maximum of 12" of separation between conduits in all directions.

The size of the bore hole shall be no greater than 1" more than the outside diameter of the coupling for the conduit to be housed inside said bore hole. In the event the Contractor cannot maintain the required separation between conduits, he shall install either electrical PVC or steel casing (schedule 40 for each) under the street at the required depth (42" minimum) and install all the required conduits in this casing.

Pits for boring shall not be closer than two feet to the back of the curb unless otherwise directed by LUS. Water jetting will not be permitted. Pits installed for this purpose shall be backfilled, thoroughly tamped and watered so that settlement does not occur. Backfilling shall be in accordance with regulation of LUS.

ARTICLE 7 – CROSSINGS AT COULEES, OBSTRUCTIONS AND SUBSURFACE DRAINAGE

Coulee crossings may be performed by one of two methods: 1) open cutting the coulee or 2) boring under the coulee. Concrete shall be provided for all open cut coulee crossings. The concrete shall be the same as described heretofore with the addition of red dye. The concrete shall encase the conduits with a minimum of 3" all around each conduit. In the event the contractor chooses directional boring, at least 36" minimum cover should be maintained under the coulee bed.

Conduits are to be laid at a depth as called for in the drawings. Conduits may be laid at a minimum cover of eighteen (18) inches over an obstruction, provided there is 2" of earth separation between the conduits and the obstruction. It shall be the decision of LUS to determine if an obstruction crossing warrants reinforcement with red dye concrete.

Subsurface drainage crossings shall comply with Public Works policy. All conduits are to be laid at a depth of at least eighteen (18) inches below the invert of drainage pipes. This shall be the rule for both public and private drainage. With the approval of LUS and Public Works, in cases where this depth is deemed excessive, conduits may be laid above subsurface drainage provided minimum cover is maintained.
ARTICLE 8 - RISER POLES AND CONDUIT SUPPORTS

Conduit for riser poles shall extend from a minimum of one (1) foot below grade to a minimum of eight (8) feet above grade and shall be PVC Schedule 80, in accordance with NEMA Standard TC2-1970, EPC-80-PVC. Conduit above eight (8) feet may be PVC Schedule 40 conduit. Provide proper galvanized conduit hangers on a 6" galvanized riser standoff.

Cross arms or brackets required for pothead installations shall be provided and installed by LUS. Any existing facilities to be adjusted shall be done so by LUS. The Contractor shall be required to complete the underground system up to and including a point that shall be indicated in the drawings.

ARTICLE 9 - STAKING

The Developer shall stake the trench centerline at one hundred (100) foot intervals (minimum 3 stakes for small dimensions), structures at the trench centerline and side property lines, back of niche and side property line, side property line, when there is no niche, and radius points, where applicable.

The Contractor shall be responsible for locating all existing utilities.

The Contractor shall not disturb property corner pins, and if so, shall employ a Registered Land Surveyor to replace said pins. The Contractor shall be responsible for all damages to landscaping that he causes.

ARTICLE 10 - OTHER UTILITIES

It shall be the responsibility of the Contractor to coordinate the work with all other utilities and all other Contractors involved with this project.

ARTICLE 11 - CONDUIT

All conduits shall be polyvinyl chloride plastic, Schedule 40, in accordance with NEMA Standard TC2, 1970, EPC-40-PVC. Cement glue shall be brushed on or sprayed liberally on all joints prior to assembly. Multiple conduits shall have a 6" earth separation in all directions, unless otherwise specified in the drawings. Bell-ends shall be installed at the end of all risers or entries into structures, and shall extend at least 6", but no more than 1", into the structure. Pull-line shall be installed in all empty conduits unless approved otherwise by LUS.

All 90 degree bends shall have the following criteria:
1. For conduits of diameter 1" or less, the radius shall be a minimum of 12".
2. For conduits of diameter 1 ¼" to 2", the radius shall be a minimum of 24".
3. For conduits of diameter 2" to 4", the radius shall be a minimum of 36".
4. For conduits of diameter 5" and 6", the radius shall be a minimum of 48".

Conduits that do not meet the minimum cover required shall be encased in concrete.
ARTICLE 12 - CONDUIT STUB OUTS

The spare stub outs from the transformer pad, cabinet pad or pedestal shall be extended a minimum of 36" from the edge of the pad or pedestal in the direction indicated in the drawings.

The Contractor shall provide the number of conduits in the transformer pad or cabinet pad as indicated in the drawings, as well as the number of spare stub outs specified. The Contractor shall provide a minimum of at least one spare stub out for each transformer pad, cabinet pad or pedestal. The stub outs from transformers and pedestals for services to homes shall be 2" PVC conduits.

ARTICLE 13 - CONDUIT PULL-LINE

The Contractor shall install a pull-line in all empty conduits. The pull-line shall be a high-strength self-lubricated polyolefin line, of braided nature, with a minimum diameter of 3/16" and a minimum breaking strength of 500 lbs. The line shall be guaranteed against rust or mildew. The line shall be GB Electrical Inc. Poly-Pull catalog no. PL235 or approved equal. (LUS Material Standards stock number 10302041.)

ARTICLE 14 - CONCRETE

Concrete shall have minimum compression strength of 3,000psi at 28 days. All reinforcement shall be structural grade deformed bars, allowable stress of 20,000psi. The water-cement ratio shall not exceed seven (7) U.S. gallons of water per sack of cement. The concrete slump shall be between 1" and 3" without a frequency vibrator, and reduced by 1/3 when a frequency vibrator is used. The concrete shall contain a minimum of five (5) sacks of cement per cubic yard, and shall be a gravel/sand mix. In the event concrete testing is required, all concrete tests shall be performed by LUS.

ARTICLE 15 - STEEL CASINGS

The Contractor shall furnish and install a casing of cold-rolled hard carbon steel in the locations as indicated in the drawings. The casing shall be placed under the device required by boring such that the borehole is not greater than two (2) inches of the outside barrel diameter of the casing.

Lengths of casing shall be joined together by the shielded electric arc welding process, in compliance with the current specifications of the American Welding Society, applicable to the work performed. Welding operators and machines shall be qualified for the particular type of work to be done. In no case shall welding be done in inclement weather, or under physical conditions that may in the opinion of LUS impair the efficiency of the welder in making acceptable welds. All welds are to be continuous.

The casing shall have a complete bitumastic coating, even after installation. The casing is to hold multiple PVC conduits, as called for in the plans.
ARTICLE 16 - FOUNDATIONS AND PADS

All poured-in-place concrete structures shall be poured monolithically, vibrated to assure freedom from cavities and honeycomb, and the surfaces are to be finished smooth with no indentations or bumps. The top of all concrete cabinet pads (feed-thru and fused) shall be four (4) inches above Final Grade and the top of all concrete transformer pads shall be six (6) inches above Final Grade as per LUS specifications and standards.

ARTICLE 17 - TRANSFORMER AND CABINET GROUNDING

The primary neutrals will be bonded together in the high voltage compartment using compression connectors. The Contractor shall furnish one (1) transformer type ground lug (LUS Material Standards stock number 10406001). The ground wire shall be a #2/0 bare soft drawn copper wire and shall be bonded to the primary neutral in the high voltage compartment and to the transformer ground lug. In the low voltage compartment, the #2/0 wire shall be tied to the neutral bussing of the transformer and to the transformer ground at the pad. All ground wire running through the concrete pad shall be installed in 1" PVC conduit.

ARTICLE 18 - COMPRESSION FITTINGS

Compression fittings shall be used to terminate or splice all aluminum conductors.

Copper to aluminum connections shall not be made except by the use of the proper electro-tin plated compression fitting.

ARTICLE 19 - TAGGING

All high-voltage cable in pull boxes, transformers, cabinets and on terminal poles, and all secondary cable in transformers and pedestals will be tagged with 3/64" x 2" x 2" yellow plastic tags, capable of being written on by a fine point black permanent ink marker, designating where the cable terminates. The tags shall be secured by use of a weatherproof nylon cable tie. The cable tie shall have a ribbed back and a non-magnetic stainless steel locking device permanently embedded in the head, in order to produce a self-locking effect, minimum pull-out strength requirements as specified by MIL-S-23190 (WEP). Cable tie shall be 5/32" x 8" in size. Recommended manufacturer is U.G. Products Co., Inc., St. Paul, Minn., catalog number 100Y or approved equal.

Transformers, cabinets and pedestals shall be labeled with 3" adhesive decals supplied by LUS. Alphanumeric characters are black on reflective yellow background. Decals shall be applied in the upper right-hand corner of the front door of transformers and cabinets and on the upper front part of pedestals, so that the decals can easily be seen from the street. Riser pole conduits shall be identified in the same manner, with the 3" adhesive decals provided by LUS. (LUS Material Standards stock number 90000011.)
ARTICLE 20 – ACCEPTANCE INSPECTION

Contractor shall contact LUS Operations via email when installation of the electrical distribution system is complete. Within 72 hours of notification by the contractor, LUS will inspect the electrical distribution system and the street lighting system for proper operation and, if needed, create a list of issues that need to be addressed before acceptance of the system. LUS shall notify the contractor of any outstanding issues via email.

Inspections requests from the contractor shall be sent to the following email address:

subinspections@lus.org

ARTICLE 21 – FIELD TESTING OF H.V. CABLE

All tests shall be made by LUS, which will include supplying the necessary testing equipment and a qualified operator of that equipment. Interpretation of the results of the tests shall be made by LUS. The Contractor's representative shall be present during all tests.

The Contractor shall notify LUS at least 48 hours prior to the time he desires to have the tests performed.

If a cable fails the test, the contractor shall locate any and all faults and replace cable as necessary at no extra charge. If, in the opinion of LUS, other cables in the same conduit have not been damaged, they may remain installed while the cable that failed the test shall be replaced with a new cable. After replacement of faulty or damaged cable, all cable within that conduit shall be re-tested.

ARTICLE 22 - CONDUIT PREPARATION

Prior to the pulling of the high-voltage cable into the conduit, the Contractor shall ensure that the cable can be drawn through the conduit with ease and with no obstructions that could damage the cable. Such preparation shall include swabbing the inside of the conduit with mandrels to clean and lubricate it. Lubricant shall be a high-grade silicone type that can be introduced into the conduit in conjunction with the mandrels. Any equipment used to prepare the conduits should be intended for that type of work.

ARTICLE 23 - CABLE INSTALLATION

After the conduits have been prepared for cable installation, the Contractor shall provide proper equipment specifically designed to handle cable-pulling. Such devices include pulling sheaves, cable guides and any other accessories required to ensure that the cable is pulled into the conduit without damage to the cable.
ARTICLE 24 - TORQUING OF CONNECTIONS

Conductors inserted in the secondary connectors shall be torqued to the force in foot-pounds as per the manufacturer’s specifications. The contractor shall provide LUS with the manufacturers name and torque specifications for all secondary connectors. LUS will inspect the connections by means of a torque-reading device. Should any connection not meet the manufacturers specifications, the Contractor may be required, by LUS, to re-torque all secondary connections in the project.

ARTICLE 25 - FOUNDATIONS FOR ALUMINUM POLES

The Contractor shall provide all concrete, reinforcing steel, ground rods and anchor bolts necessary for a complete foundation. The concrete shall be as described above and shall be poured in place. Set anchor bolts in accordance with manufacturer's template and recommendations. Foundations shall be as shown on the plans.

ARTICLE 26 - APRONS FOR ALUMINUM POLES

The top of the foundation shall have an apron that extends an additional 20” diameter to the foundation and is 4” thick. The apron shall be at the same grade as the foundation, and shall be poured as part of the foundation (no joints).

ARTICLE 27 - POLE EXCAVATION FOR FIBERGLASS POLES

Streetlight pole excavations are to be four (4) feet deep with a minimum diameter of twelve (12) inches and maximum diameter of sixteen (16) inches. Excavations are to be compacted to match existing grade.

ARTICLE 28 - SETTING AND ALIGNING OF POLES

Poles shall be set level with true vertical, which shall be done after the luminaire is mounted. For installation in the vicinity of open ditches, streetlight standards shall not be installed until the final contour of the ditch is attained. In the vicinity of curbs and subsurface drainage, the street light standards shall not be installed until the paving contractor has installed the curbs. Conduits may be installed prior to the installation of curbs, as desired by the Contractor, but the cost of adjusting shall be borne by the Contractor. Poles shall be set in the locations as dictated by LUS.

ARTICLE 29 - SUBMITTALS

The Contractor shall submit six (6) of the shop drawing copies to LUS on the following items:

1. N/A
ARTICLE 30 - STREET LIGHTING CONDUCTORS

Conductors shall be copper, type THHN or better, rated for 600 Volts, stranded and sized as indicated in the plans. The neutral conductor's insulation shall be striped to distinguish it from the phase conductors, possibly by means of white permanent marking tape at the termination points.

Conductors above the fuse holders and/or hand hole in the light poles (load side) shall be #12 THHN copper, stranded and rated for 600 Volts. Conductors beyond the fuse holders in the transformer or pedestal shall be as indicated on the plans. Conductors shall be installed in continuous lengths, without splices, from terminal to terminal. Make connections in the bases with in-line connections.

Poles shall be bonded to ground with a #10 AWG bare copper wire.

ARTICLE 31 - GROUNDING FOR STREET LIGHTING

The Contractor shall furnish and install all materials necessary for grounding all poles and electrical services, in accordance with NEC requirements. Provide ground rods as called for in the plans. Grounding connections to the ground rods shall be made with Blackburn type G5 clamp, or approved equal. Grounding connections made to bolts in the poles shall be a Buchanan type L lug, or approved equal. Streetlight fixtures shall be grounded with the fourth wire (green) from the pedestal or transformer ground.

The electrical system shall contain a grounding conductor (#8 THHN copper, stranded, green colored insulation), which shall be continuous throughout and shall interconnect all metal poles to the services and to each other.

ARTICLE 32 - TESTING

Testing for street lighting cable shall follow standards as set forth in ARTICLE 20.

ARTICLE 33 - LUMINAIRES

All streetlights shall have individual photocells and each shall be fused in the base of the pole or in the pedestal or transformer, wherever the source is acquired.

The Contractor agrees to replace any lamps having burned out or repair any luminaires having failed within one year of system final acceptance date. The Contractor shall furnish with his bid the complete warranty applicable to the streetlights.
ARTICLE 34 - FINAL GRADE

Final Grade shall be established and achieved by the developer prior to any electrical construction commencing. Final Grade must be 36” minimum above all conduits, according to LUS specifications in the construction standards. LUS Electric Operations shall inspect the depth of the conduits and the height of the top of all concrete pads, in regards to the Final Grade prior to any backfilling, for adherence to LUS specifications. If the Final Grade is higher than the height of the roadway, all driveways shall be constructed so as to not affect the minimum depth of conduit that must be maintained. No final acceptance will be issued by LUS until all of these requirements have been met.

ARTICLE 35 - DISTRIBUTION MATERIALS

The high-voltage cable for #1/0 conductor shall be LUS Material Standards stock number 10303001; for #4/0 conductor, stock number 10303002 (Unit of construction number UD__).

Pedestals shall be LUS Material Standards stock number 10310007 (Unit of construction number UKP-XL).

The high-voltage elbow terminators shall be LUS Material Standards stock number 10412001 for #1/0 conductor and stock number 10412002 for #4/0 conductor (Unit of construction number UG1).

The transformer bushing insert (loadbreak type) shall be LUS Material Standards stock number 10416002.

The high-voltage lighting arrester elbow shall be LUS Materials Standards stock number 10424003 and the parking stand lightning arrester shall be stock number 10424004. These will be supplied and installed by LUS unless otherwise noted (Unit of construction numbers UG5-6 and UG5-6P respectively).

The high-voltage outdoor cable terminators shall be LUS Material Standards stock number 10409002 for #1/0 conductor and stock number 10409004 for #4/0 conductor (Unit of construction number UM-CT2P).

The transformer secondary connectors shall be LUS Material Standards stock number 10720009 for four (4) positions, 10720010 for six (6) positions and 10720011 for eight (8) positions (Unit of construction number UKGC).

The pedestal secondary connectors shall be LUS Material Standards stock number 10720012 for five (5) positions, 10720013 for six (6) positions and 10720014 for seven (7) positions (Unit of construction number UKPC).

The secondary cables shall be LUS Material Standards stock number 10302002 for #3/0 conductor, 10302003 for 350 KCMIL and 10302004 for 500 KCMIL (Unit of construction number UK3).

ARTICLE 36 - POLES, LUMINAIRES, LAMPS, FUSING

The aluminum standard used for residential street lighting for LUS projects shall be as according to LUS' Material Standards stock number 10610014.

The fiberglass standard used for residential street lighting for LUS projects shall be as according to LUS' Material Standards stock number 10610012 with a 6’ bracket according to LUS' Material Standards stock
number 10608016.

The fiberglass decorative standard used for residential street lighting for LUS projects shall be as according to LUS' Material Standards stock number 10610102.

The luminaire used for residential street lighting for LUS projects shall be as according to LUS' Material Standards stock number 10609102 (for non-decorative standard) and 10610101 (for decorative standard).

Fuse holders shall be of the Bussman HEB Tron non-breakaway type with 10 Amp limitrion fuses and shall be as according to LUS' Material Standards stock number 10604010.

Photoelectric cell shall be as according to LUS' Material Standards stock number 10605010. Lamps used with the luminaire shall be LUS' Material Standards stock number 10607007.
Appendix A
Material Specification Sheet

Project:

Date:

Primary Cable

(Include manufacturers specification sheet for all cable used)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Secondary Cable

(Include manufacturers specification sheet for all cable used)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Transformer Secondary Connectors

(Include manufacturers specification sheet w/torque requirements for all connectors used)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Stock Number</th>
<th>Cable Size</th>
<th>Torque Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Stock Number</th>
<th>Cable Size</th>
<th>Torque Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Pedestal Secondary Connectors
(Include manufacturers specification sheet w/torque requirements for all connectors used)

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Stock Number:</th>
<th>Cable Size</th>
<th>Torque Specifications:</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Stock Number:</th>
<th>Cable Size</th>
<th>Torque Specifications:</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

200A Terminators (Elbow)

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Stock Number:</th>
<th>Stock Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

200A Cold Shrink Terminator

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Stock Number:</th>
<th>Stock Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>